PMT

June 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07

MATHEMATICS AND HIGHER MATHEMATICS Paper 7 (Probability and Statistics 2)

Page 1	Mark Scher	ne	Syllabus Paper
	A AND AS LEVEL –	JUNE 200	4 9709/8719 7
1 (i) H ₀ : μ = 15 or p = 0.25 H ₁ : μ > 15 or p > 0.25		B1 1	For H_0 and H_1 correct
(ii) Test statistic $z = \pm \frac{21.5 - 15}{\sqrt{60 \times 0.25 \times 0.75}} = 1.938$		M1	For attempt at standardising with or without cc, must have $$ something with 60 in on the denom
OR test statistic $z = \pm \frac{\frac{22}{60} - \frac{0.5}{60} - \frac{15}{60}}{\sqrt{\frac{0.25 \times 0.75}{60}}} = 1.938$		A1	For 1.94 (1.938)
CV <i>z</i> =	1.645	M1	For comparing with 1.645 or 1.96 if 2-tailed,
In CR (Claim justified	A1ft 4	signs consistent, or comparing areas to 5% For correct answer(ft only for correct one-tail test)
2 (i) Mean = Var = 0 St dev	= 3.5 + 2.9 + 3.1 = 9.5 $0.3^2 + 0.25^2 + 0.35^2$ (=0.275) = 0.524	B1 M1 A1 3	9.5 as final answer For summing three squared deviations For correct answer
(ii) $z = -1000000000000000000000000000000000000$	$\frac{9-9.5}{\frac{their \text{ var}}{4}} = -1.907$ $\frac{36-38}{\sqrt{(4 \text{ x their var})}} = -1.907$ $\frac{36-38}{\sqrt{(4 \text{ x their var})}} = 0.9717 = 0.972$	M1 M1 A1 3	For standardising, no cc For $\sqrt{\frac{their \operatorname{var}}{4}}$ or $\sqrt{4 \times their}$ var) in denom - no 'mixed' methods. For correct answer
3 (i) E(2X-3 = - 2	Y) = 2E(X) –3E(Y) = 16 – 18	M1 A1 2	For multiplying by 2 and 3 resp and subt For correct answer
(ii) Var (2) = 19.2 = 73.2	K-3Ƴ) = 4Var (X) +9Var (Y) + 54	B1 M1 M1 A1 4	For use of var (Y) = 6 For squaring 3 and 2 For adding variances (and nothing else) For correct final answer
4 (i) $\bar{x} = 375$ σ^{2}_{n-1}	.3 = 8.29	B1 M1 A1 3	For correct mean (3.s.f) For legit method involving <i>n</i> -1, can be implied For correct answer
(ii) <i>p</i> = 0.1	9 or equiv.	B1	For correct <i>p</i>
$0.19 \pm 2.$	$055 \times \sqrt{\frac{0.19 \times 0.81}{200}}$	M1	For correct form $p \pm z \times \sqrt{\frac{pq}{n}}$ either/both sides
0.133 <	p < 0.247	B1 A1 4	For $z = 2.054$ or 2.055 For correct answer

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2004	9709/8719	7

L

	1	
5 (i) $\frac{c-54}{3.1/\sqrt{10}}$ = -1.282	B1 M1	For + or – 1.282 seen For equality/inequality with their $z (\pm)$ (must have used tables), no $\sqrt{10}$ needed (c can be
$c = 54 - 1.282 \times \frac{3.1}{\sqrt{10}} = 52.74$	A1	numerical) For correct expression (c can be numerical, but signs must be consistent)
	A1 4	For correct GIVEN answer. No errors seen.
(ii) $P(\bar{x} > 52.74) = 1 - \Phi\left(\frac{52.74 - 51.5}{52.74}\right)$	B1	For identifying the outcome for a type II error
$= 1 - \Phi(1.265) = 1 - 0.8971$	M1 A1	For standardising , no $\sqrt{10}$ needed For \pm 1.265 (accept 1.26-1.27)
= 0.103 or 0.102	A1 4	For correct answer
6 (i) P(5) = $e^{-6} \times \frac{6^5}{5!} = 0.161$	M1	For an attempted Poisson P(5) calculation, any mean
	AT Z	For correct answer
(ii) $P(X \ge 2) = 1 - \{P(0) + P(1)\}$ = 1 - $e^{-1.6}(1+1.6)$	B1 M1	For μ = 1.6, evaluated in a Poisson prob For 1 – P(0) – P(1) or 1 – P(0) – P(1) – P(2)
= 0.475	A1 3	For correct answer
(iii)	M1	For multiplying P(1) by P(4) any (consistent)
$\left(e^{-3} \times 3\right) \times \left(e^{-3} \times \frac{3^4}{4!}\right)$	M1	mean For dividing by P(5) any mean
$e^{-6} \times \frac{6^5}{5!}$ = 0.156 or 5/32	A1 3	For correct answer
7 (i) $c \int_{0}^{5} t(25-t^2) dt = 1$	M1	For equating to 1 and a sensible attempt to integrate
$c \left[\frac{25t^2}{2} - \frac{t^4}{4} \right]_0^5 = 1$	A1	For correct integration and correct limits
$c\left[\frac{625}{2} - \frac{625}{4}\right] = 1 \implies c = \frac{4}{625}$	A1 3	For given answer correctly obtained
(ii) $\int_{0}^{4} ct(25-t^2) dt = \left[\frac{25ct^2}{2} - \frac{ct^4}{4}\right]^4 = c[136] - c[46]$	M1*	For attempting to integrate $f(t)$ between 2 and 4 (or attempt 2 and 4)
2 L J2	M1*dep	For subtracting their value when t = 2 from
$=\frac{7/2}{1000}$ (0.576)		their value when t = 4
125	A1 3	For correct answer
(iii) $\int_{-\infty}^{\infty} ct^2 (25 - t^2) dt = \left[\frac{4}{625} \times \frac{25t^3}{3} - \frac{4}{625} \times \frac{t^5}{5}\right]^5$	M1*	For attempting to integrate $tf(t)$, no limits needed
	A1	For correct integrand can have c (or their c)
$=\frac{8}{3}$	M1*dep	For subtracting their value when t=0 from
3		their value when t=5
	A1 4	For correct answer