GCE A AND AS LEVEL

\square

SYLLABUS/COMPONENT: 9709/07, 8719/07
 MATHEMATICS AND HIGHER MATHEMATICS Paper 7 (Probability and Statistics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2004	$9709 / 8719$	7

$\begin{array}{ll} 1 \text { (i) } \quad \mathrm{H}_{0}: \mu=15 \text { or } p=0.25 \\ & \mathrm{H}_{1}: \mu>15 \text { or } p>0.25 \end{array}$	B1 1	For H_{0} and H_{1} correct
(ii) Test statistic $z= \pm \frac{21.5-15}{\sqrt{60 \times 0.25 \times 0.75}}=1.938$ OR test statistic $z= \pm \frac{22 / 60^{-0.5 / 60}-15 / 60}{\sqrt{\frac{0.25 \times 0.75}{60}}}=1.938$ $C V z=1.645$ In CR Claim justified	M1 A1 M1 A1ft 4	For attempt at standardising with or without cc , must have $\sqrt{ }$ something with 60 in on the denom For 1.94 (1.938) For comparing with 1.645 or 1.96 if 2-tailed, signs consistent, or comparing areas to 5% For correct answer(ft only for correct one-tail test)
$2 \text { (i) } \begin{aligned} & \text { Mean }=3.5+2.9+3.1=9.5 \\ & \mathrm{Var}=0.3^{2}+0.25^{2}+0.35^{2} \quad(=0.275) \\ & \text { St dev }=0.524 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \\ \hline \end{array}$	9.5 as final answer For summing three squared deviations For correct answer
$\begin{aligned} & \text { (ii) } z=\frac{9-9.5}{\sqrt{\frac{\text { their var }}{4}}}=-1.907 \\ & \text { or } z=\frac{36-38}{\sqrt{(4 \times \text { their var })}}=-1.907 \\ & \Phi(1.907)=0.9717=0.972 \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	For standardising, no cc For $\sqrt{\frac{\text { their var }}{4}}$ or $\sqrt{ }(4 \times$ their var) in denom no 'mixed' methods. For correct answer
$\begin{aligned} 3 \text { (i) } & E(2 X-3 Y)=2 E(X)-3 E(Y)=16-18 \\ = & -2 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	For multiplying by 2 and 3 resp and subt For correct answer
$\text { (ii) } \begin{aligned} & \operatorname{Var}(2 X-3 Y)=4 \operatorname{Var}(X)+9 \operatorname{Var}(Y) \\ = & 19.2+54 \\ = & 73.2 \end{aligned}$	B1 M1 M1 A1 4	For use of $\operatorname{var}(Y)=6$ For squaring 3 and 2 For adding variances (and nothing else) For correct final answer
$\begin{aligned} 4 \text { (i) } \bar{x} & =375.3 \\ & \sigma^{2}{ }_{n-1}=8.29 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \\ \hline \end{array}$	For correct mean (3.s.f) For legit method involving $n-1$, can be implied For correct answer
(ii) $p=0.19$ or equiv. $\begin{aligned} & 0.19 \pm 2.055 \times \sqrt{\frac{0.19 \times 0.81}{200}} \\ & 0.133<p<0.247 \end{aligned}$	B1 M1 B1 A1 4	For correct p For correct form $p \pm z \times \sqrt{\frac{p q}{n}}$ either/both sides For $z=2.054$ or 2.055 For correct answer

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2004	$9709 / 8719$	7

5 (i) $\frac{c-54}{3.1 / \sqrt{10}}=-1.282$ $c=54-1.282 \times \frac{3.1}{\sqrt{10}}=52.74$	B1 M1 A1 A1 4	For + or - 1.282 seen For equality/inequality with their $z(\pm)$ (must have used tables), no $\sqrt{10}$ needed (c can be numerical) For correct expression (c can be numerical, but signs must be consistent) For correct GIVEN answer. No errors seen.
$\text { (ii) } \begin{aligned} \mathrm{P}(\bar{x}> & 52.74)=1-\Phi\left(\frac{52.74-51.5}{3.1 / \sqrt{10}}\right) \\ & =1-\Phi(1.265)=1-0.8971 \\ & =0.103 \text { or } 0.102 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 4 \end{array}$	For identifying the outcome for a type II error For standardising, no $\sqrt{10}$ needed For ± 1.265 (accept 1.26-1.27) For correct answer
6 (i) $\mathrm{P}(5)=e^{-6} \times \frac{6^{5}}{5!}=0.161$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	For an attempted Poisson $\mathrm{P}(5)$ calculation, any mean For correct answer
$\text { (ii) } \begin{aligned} & P(X \geq 2)=1-\{P(0)+P(1)\} \\ = & 1-e^{-1.6}(1+1.6) \\ = & 0.475 \end{aligned}$	B1 M1 A1 3	For $\mu=1.6$, evaluated in a Poisson prob For $1-P(0)-P(1)$ or $1-P(0)-P(1)-P(2)$ For correct answer
(iii) $\begin{aligned} & \mathrm{P}(1 \text { then } 4 \mid 5)=\frac{\left(e^{-3} \times 3\right) \times\left(e^{-3} \times \frac{3^{4}}{4!}\right)}{e^{-6} \times \frac{6^{5}}{5!}} \\ & =0.156 \text { or } 5 / 32 \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	For multiplying $\mathrm{P}(1)$ by $\mathrm{P}(4)$ any (consistent) mean For dividing by $\mathrm{P}(5)$ any mean For correct answer
$\begin{aligned} & 7 \text { (i) } c \int_{0}^{5} t\left(25-t^{2}\right) \mathrm{d} t=1 \\ & c\left[\frac{25 t^{2}}{2}-\frac{t^{4}}{4}\right]_{0}^{5}=1 \\ & c\left[\frac{625}{2}-\frac{625}{4}\right]=1 \Rightarrow c=\frac{4}{625} \end{aligned}$	$\begin{array}{\|ll} \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	For equating to 1 and a sensible attempt to integrate For correct integration and correct limits For given answer correctly obtained
$\text { (ii) } \begin{aligned} & \int_{2}^{4} c t\left(25-t^{2}\right) \mathrm{d} t=\left[\frac{25 c t^{2}}{2}-\frac{c t^{4}}{4}\right]_{2}^{4}=c[136]-c[46] \\ &=\frac{72}{125}(0.576) \end{aligned}$	M1* M1*dep A1 3	For attempting to integrate $\mathrm{f}(t)$ between 2 and 4 (or attempt 2 and 4) For subtracting their value when $t=2$ from their value when $t=4$ For correct answer
$\text { (iii) } \begin{aligned} & \int_{0}^{5} c t^{2}\left(25-t^{2}\right) \mathrm{d} t=\left[\frac{4}{625} \times \frac{25 t^{3}}{3}-\frac{4}{625} \times \frac{t^{5}}{5}\right]_{0}^{5} \\ & \quad=\frac{8}{3} \end{aligned}$	M1* A1 M1*dep A1 4	For attempting to integrate $f(t)$, no limits needed For correct integrand can have c (or their c) For subtracting their value when $t=0$ from their value when $t=5$ For correct answer

